Joint Dictionary and Classifier Learning for Categorization of Images using a Max-margin Framework

Hans Lobel*, René Vidal⁺, Domingo Mery^{*}, Alvaro Soto^{*}

Machine Intelligence Group Pontificia Universidad Católica, Chile

Center for Imaging Science Johns Hopkins University, Baltimore, Maryland

Bag of Visual Words is one of the most popular recognition techniques

- Mid-level dictionary and top-level classifier.
- The dictionary is commonly built with a generative process (k-means, sparse coding).
- Generally uses KNN or a set of one-vs-all classifiers for multiclass categorization.
- Learning processes are separate, i.e., no coupling between dictionary and classifiers.

Jointly learning dictionary and classifiers is a key aspect

- Can increase dictionary discriminativity, thus facilitating classifiers work.
- Few works explore this in a recognition context:
 - ✓ Categorization -> Lian et al. (2010)
 - ✓ Segmentation -> Jain et al. (2012)
 - ✓ Saliency -> Yang & Yang (2012)
- Results show a clear performance improvement.

True multiclass classification can also improve the dictionary

- Takes advantage of meaningful correlations between categories.
- Can induce word sharing behavior, which is a very desirable property (Ott & Everingham, 2011).
- Almost no work explores this using BoVW.

A joint max-margin framework for recognition

- Discriminative dictionary composed of multiple linear SVMs.
- Multiclass SVM for categorization, using scores of dictionary words activations.
- Max-pooling over a spatial pyramid.
- Jointly learnt using a regularized max-margin energy minimization problem.

Outline

- Image model: Encoding and categorization
- Learning problem
- Experiments and results
- Conclusions

Visual descriptors are encoded according to the dictionary

• Assume a dictionary $\Theta = [\theta_1 \ \theta_2 \ \theta_3 \ \dots \ \theta_K]$, composed of linear SVMs, and a set of visual descriptors extracted from squared image sectors.

• A visual descriptor v is encoded as follows:

$$c_{\Theta}(v) = [v^T \theta_1, \dots, v^T \theta_K] = v^T \Theta$$

Images are encoded based on a spatial pyramid and max-pooling

• Given a spatial pyramid formed by L regions, a region l is encoded the following way:

$$x_{l,\Theta} = [\max_{j=1}^{N_l} v_{l,j}^T \theta_1, \ \max_{j=1}^{N_l} v_{l,j}^T \theta_2, \ \dots, \ \max_{j=1}^{N_l} v_{l,j}^T \theta_K]^T$$

• Finally, the encoding of an image, $x_{\Theta}(I)$, is obtained by concatenating the encoding of each region.

Images are encoded based on a spatial pyramid and max-pooling

Energy is given by a linear combination of max functions

• Given a set of linear classifiers $W = [w_1 \ w_2 \ \cdots \ w_M]$ we define the energy of an image with L regions as follows:

$$E(I, y, \Theta, W) = w_y^T x_\Theta(I) = \sum_{l=1}^{L} \sum_{k=1}^{K} w_{y,l,k} \cdot \max_{j=1}^{N_l} (v_{l,j}^T \theta_k)$$

• An image is finally categorized the following way:

$$y^* = \operatorname*{argmax}_{y} E(I, y, \Theta, W)$$

Energy is given by a linear combination of max functions

A regularized max-margin energy minimization learning problem

 Given a set of training examples {*I_i*, *y_i*}^N_{i=1}, we find *W* and *Θ* by solving the following max-margin problem:

$$\min_{W,\Theta,\{\xi_i\}} \frac{1}{2} \|W\|_F^2 + \frac{C_1}{2K} \|\Theta\|_F^2 + \frac{C_2}{N} \sum_{i=1}^N \xi_i$$

s.t. $E(I_i, y_i, \Theta, W) - E(I_i, y, \Theta, W) \ge \Delta(y_i, y) - \xi_i,$
 $\forall i \in \{1, \dots, N\} \land \forall y \in \{1, \dots, M\}.$

AT

Non-convexity does not allow using the same approach

- Our problem is similar to a Structural SVM, but differs in two fundamental points:
 - i. Constraints not linear on Θ
 - ii. Optimization is not jointly convex on W and Θ

• We solve the problem using an alternating minimization approach

Classifier learning is straight forward

 By fixing Θ, the problem reduces to a standard multiclass SVM. Can be efficiently solved using a cutting plane algorithm.

$$\min_{W,\{\xi_i\}} \frac{1}{2} \|W\|_F^2 + \frac{C_2}{N} \sum_{i=1}^N \xi_i$$

s.t. $E(I_i, y_i, \Theta, W) - E(I_i, y, \Theta, W) \ge \Delta(y_i, y) - \xi_i,$ $\forall i \in \{1, \dots, N\} \land \forall y \in \{1, \dots, M\}.$

Dictionary learning requires a different approach

• By fixing W, we are required to solve the following problem:

$$\begin{split} \min_{\Theta} \frac{C_1}{2K} \|\Theta\|_F^2 + \frac{C_2}{N} \sum_{i}^{N} E(I_i, \hat{y}_i, \Theta, W) + \Delta(y_i, \hat{y}_i) - E(I_i, y_i, \Theta, W) \\ & \text{where} \end{split}$$

$$\hat{y}_i = \operatorname*{argmax}_{y} E(I_i, y, \Theta, W) + \Delta(y_i, y)$$

Dictionary learning requires a different approach

- To solve the last problem, we use an interior point optimization method, which requires the problem to be differentiable.
- To achieve that, we approximate the max function with a convex soft-max version, given by the log-sum-exponential function:

$$\max_{i=1}^{N} (z_i) \approx \frac{1}{r} \log(\sum_{i=1}^{N} \exp(rz_i))$$

Some implementation details before the results

- Evaluation performed on three datasets: 15 scene categories, MIT67 and Caltech101.
- HOG+LBP descriptors are extracted on dense grid of regions of 16x16 pixels, with a spacing of 8 pixels in each direction.
- The initial dictionary is obtained by clustering a subset of descriptors and the training a linear SVM for each centroid.

Performance benefits from more words, up to certain point

	Number of Words			
Dataset	50	100	200	
Caltech101	63.1 ±0.8	72 ± 0.5	73.1 ± 0.5	
15 Scenes	72.2 ± 0.5	83.7 ± 0.2	84.8 ± 0.2	
MIT67	31.2	38.3	39.9	

State-of-the-art result with far less words than other methods

		Datasets		
Method	# Words	Caltech101	15 Scenes	MIT67
Baseline	200	63.9 ± 0.6	78.1 ± 0.3	33.2
SPM	400	64.6 ± 0.8	81.4 ± 0.5	-
LLC	2048	73.4	80.5 ± 0.6	-
LCSR	1024	73.2 ± 0.8	82.7 ± 0.5	-
ScSPM	1024	73.2 ± 0.5	80.3	-
Max-Margin	5250	-	82.17±0.5	-
Object Bank	200	-	80.9	37.6
Reconfigurable Models	200	-	78.6 ± 0.7	37.9
Discriminative Patches	210*	-	-	38.1
Proposed	200	73.1 ± 0.5	84.8 ± 0.2	39.9

Jointly learning dictionary and classifiers actually works

- Performance is notably increased when compared to the baseline method.
- The proposed scheme produces a strong sharing of visual words among the target classes.
- This sharing allows us to use smaller dictionaries and achieve state-of-the-art performance.

Joint Dictionary and Classifier Learning for Categorization of Images using a Max-margin Framework

Hans Lobel*, René Vidal⁺, Domingo Mery^{*}, Alvaro Soto^{*}

Machine Intelligence Group Pontificia Universidad Católica, Chile

Center for Imaging Science Johns Hopkins University, USA